U. S. Geological Survey's Data, Knowledge, and Models to Help Build an Environmental Public Health Tracking Network

by Paul Squillace, USGS

Goals of Presentation

- Provide a preview of data and information that a CDC/USGS project will provide to grantees to help define water quality issues for domestic (private) water supplies
- Get feedback on the usefulness of these data and information
- Demonstrate how these data and information can be used

Data

- Water Quality Data
 - NAWQA: systematic data collection and analysis to define water quality in major aquifers
 - NWIS: repository of data from many USGS projects
- Ancillary Data
 - Trace elements in stream sediment
 - Geologic information
 - Water use information

Location of Domestic (Private) Wells Sampled as Part of the NAWQA Program (n = 1,907)

NWIS Domestic Wells With Water-Quality Data for 21 Grantee States (n = 27,971)

Which Pesticides Selected

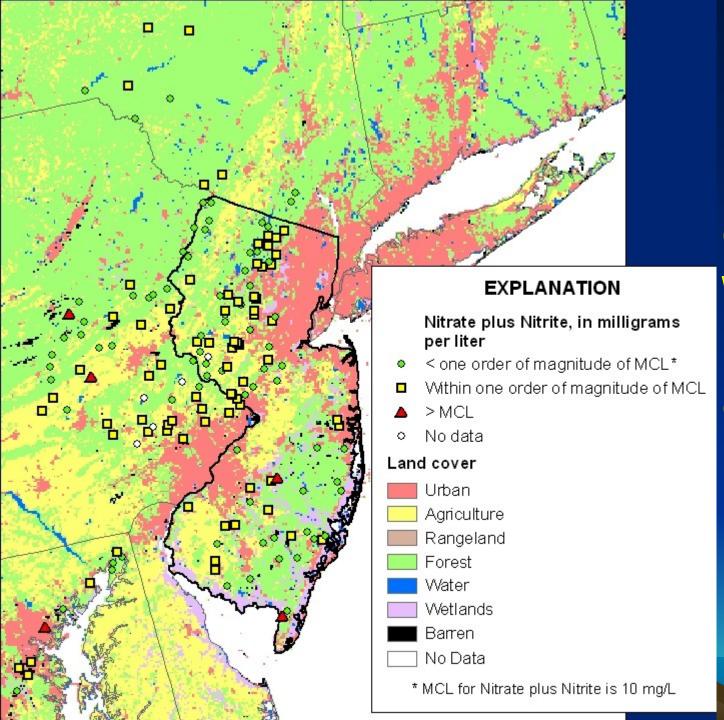
Which VOCs Selected

Which Trace Elements and Nutrients Selected

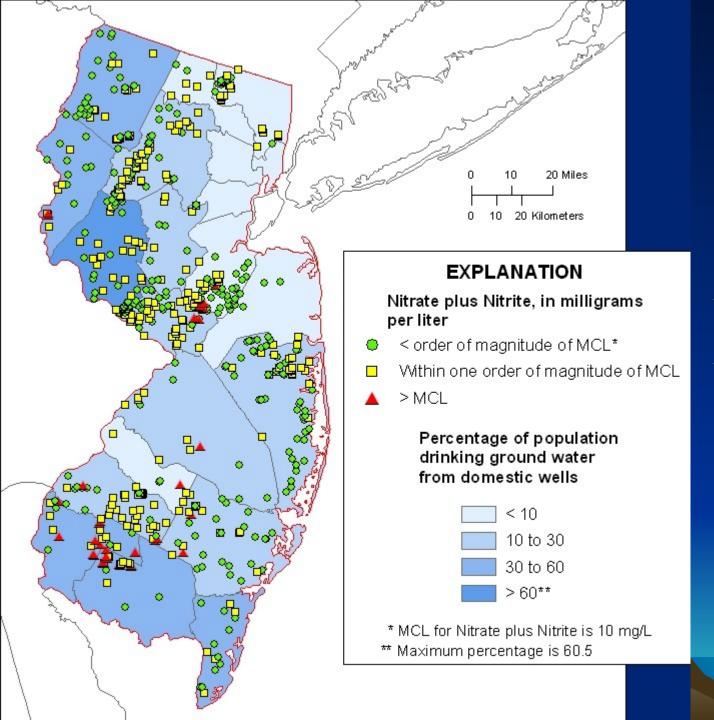
Water Quality by Principal Aquifer

Results for 21 Grantee States

Domestic Wells **Sampled** with **Principal** Aquifers (NAWQA Data)


Nitrate Conc. With Principal Aquifers (NAWQA Data)

Nitrate Conc. by Principal Aquifer


Nitrate Conc. With Land Cover (NAWQA Data)

Nitrate Conc. With **Principal** Aquifers (NWIS Data)

Nitrate Conc. With Water **Use** (NWIS Data)

Knowledge

 Simulate Occurrrence, Distribution, and Concentrations by modeling source, transport, and fate of contaminants

Monitoring

GIS

Prediction

Map of Surficial Deposits and Materials

Arsenic in Stream Sediment

Example: Nitrate Model/Arsenic Models

Probability of arsenic conc. ≥ 5 μg/L in bedrock aquifers

Nitrate Drinking Water Model

		Significance
	Coeff.	Level
Parameter	sign	(<i>p</i>)
Nitrogen source (β)		
Farm fertilizer	+	<0.01
Confined manure	+	<0.01
Orchards/vineyards	+	0.04
Population density	+	0.04
Transport to aquifer (α)		
Water input ^a	+	<0.01
Semiconsolidated sands	+	0.02
Sandstone and carb. rocks	+	<0.01
Glacial deposits	_	0.02
Drainage ditch	_	<0.01
Hortonian overland flow	_	<0.01
Attenuation (δ)		
Fresh surface water withdrawal	_	<0.01
Irrigation tailwater recovery	_	<0.01
Dunne overland flow	_	<0.01
Well depth	_	0.18
aratio of irrigated land to precipitation	n	

^aratio of irrigated land to precipitation

Prediction

Population Scenarios

	Hypothetical depth —			Typical depth
Pı	"shallow" redicted nitrate	Domestic well us defined b	sers in areas	Model → Reduce risk by seeking deeper supplies.
	concentration range	30 ft	160 ft	Percent change
	0 – ≤ 1 mg/L	19,400,000	20,000,00	0 + 3
	> 1 – ≤ 5 mg/L	13,300,000	13,000,00	0 – 3
	> 5 – ≤ 10 mg/L	1,400,000	1,240,00	0 – 12
	> 10 mg/L	528,000 1% (467,00 of users	0 – 12

Summary

- Two sources of USGS water quality data: NAWQA, NWIS
- 11 contaminants selected for investigation in 21 grantee states
- TE had occurrence and concentrations that were of greatest human health concern
- Models can be used to interpolate and extrapolate monitoring data

